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Abstract. Waste management in the agro-industrial sector is a significant issue that demands
a thoughtful and multifaceted approach, not only to prevent environmental contamination
with harmful substances but also to produce value-added products. The selection of waste
treatment technology should be based on the waste's nature, composition, and initial
quantities, which are determined by the primary production cycle, raw materials, and applied
conditions. This study focuses on exploring innovative methods to enhance the conversion
rate and efficiency of organic waste biomass by incorporating small amounts of biologically
active substances into the fermentation mix. The research also examines the impact of
natural plant-based additives on various types of biomass within the agro-industrial sector.
In agricultural areas where industries produce wine, spirits, beer, and juices, liquid waste is
continuously produced in a state of ongoing digestion. This requires strict measures to
prevent its direct disposal into landfills, water bodies, or other environmental compartments,
as such actions could disrupt the natural balance of soil microorganisms, plants, and other
organisms. Present-day methods for handling solid organic waste often include its
application in agriculture, incineration, anaerobic digestion, composting, and related
processes. Liquid waste from the agro-industrial sector can be treated through processes like
sedimentation, settling, and anaerobic fermentation.
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Rezumat. Gestionarea deseurilor din sectorul agroindustrial este o problema importanta care
necesitd o abordare inteligentd si complexd, pentru a preveni poluarea mediului cu
componente toxice, dar si pentru a obtine produse cu valoare adaugata. Tehnologia de tratare
a deseurilor trebuie selectata in functie de natura, compozitia si cantitatile initiale ale
deseurilor, care depind de ciclul principal de productie, de materiile prime si de conditiile
aplicate. Prezentul studiu se concentreaza pe investigarea metodelor originale de crestere a
ratei de conversie si a gradului de conversie a biomasei deseurilor organice, utilizarea unor
cantitati mici de substante biologic active introduse in amestecul fermentat. S-a urmadrit
efectul unor aditivi de origine vegetald naturala, introdusi in diferite tipuri de biomasa din
sectorul agroindustrial. Concret, in regiunile agricole cu industrii producatoare de vin, bauturi
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spirtoase, bere si sucuri, deseurile lichide sunt generate in stare de digestie continua, ceea
ce fnseamna prevenirea stricta a deversarilor direct in gropile de gunoi, apa sau alte
compartimente de mediu, deoarece pot incalca normele naturale. echilibrul microbiotei
solului, al plantelor si al altor organisme vii. Metodele existente de gestionare a deseurilor
organice solide fsi asuma aplicarea in agricultura, ardere, digestie anaeroba, compostare etc.
Deseurile lichide din sectorul agroindustrial pot fi tratate prin sedimentare, decantare,
fermentare anaeroba etc.

Cuvinte cheie: deseuri, sector agroindustrial, management, produse cu valoare addugatd, vin,
bduturi spirtoase, bere.

1. Introduction

In recent years, the food industry has experienced unprecedented development, which
is correlated with the rapid increase in the quantity of agricultural waste. Clearly,
environmental issues and the negative impact of agricultural waste have become a major
concern. Agricultural waste has considerable applicability due to its high resilience, low costs,
availability, and ease of reuse. One of the primary environmental challenges facing today's
society is the ongoing rise in the volume of organic waste. These alarming aspects have led
to the necessity of designing sustainable development that suggests maintaining harmony
and balance between humans and nature while promoting socio-economic progress. The
circular bioeconomy for producing high-value products has attracted interest due to emerging
policies focused on the reuse and sustainable recovery of underutilized local raw materials
in various countries.

Beer, a fermented beverage with ancient origins, is currently the fifth most consumed
drink worldwide. In 2018, global beer consumption across 170 major countries and regions
was approximately 1.8879 billion hL [1]. According to reports [2], global beer production in
the same year surpassed 1.94 billion hL, highlighting the significant economic impact of the
beer manufacturing industry. Modern beer production is largely conducted on a large scale,
yielding substantial amounts of beer and by-products.
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Figure 1. Beer production process [3,4].
The larger red arrows indicate the steps where the main brewery by-products are removed.
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The beer production process involves several sequential steps: grinding grains,
mashing, filtering, boiling, fermenting, maturation, and packaging (Figure 1) [3,4]. The
primary objective of this process is to convert starch from grains into simple sugars, extract
these sugars, and ferment them using yeast to produce a lightly carbonated beverage with
varying alcohol content.The first and most abundant by-product in the brewing process is
generated after mashing. During this stage, spent grains are separated and removed once the
liquid produced in mashing, known as wort, is extracted. Another type of waste is created
after the wort boiling stage, where the thermal denaturation of proteins occurs, causing high
molecular weight proteins to precipitate, forming a waste product known as hot trub. This
hot trub, which contains spent hops, is separated and removed from the wort. Following this,
yeast is added to initiate fermentation. Once fermentation is complete, most of the yeast is
removed from the young beer, producing another by-product called spent beer yeast. Before
the beer is packaged, it is typically filtered through diatomaceous earth or cellulose filters to
eliminate any remaining yeast residues [3, 4].

2. Characteristics of biomass resulting from the brewing industry and reuse

possibilities

Brewer's spent grain (BSG) is a low-value by-product of the brewing industry,
generated in substantial quantities each year. BSG is the solid residue left from barley malt
after wort production and represents around 85% of all residues produced by breweries [4].

This solid by-product contains water-insoluble proteins, along with the pericarp hull
and seed coating from the original barley grain [5]. The dry matter of BSG consists of
approximately 20% proteins and 70% fibers, with a negligible starch content. Due to its high
protein content, BSG has potential applications similar to whey proteins, offering various
health benefits to consumers. Additionally, BSG is rich in phenolic compounds, particularly
ferulic acid and p-coumaric acid [6], as well as oligosaccharides and polysaccharides. Recent
research suggests that dietary phenolic compounds may have anticancer, anti-inflammatory,
and antioxidant properties [7,8], which has sparked significant interest in plant phenolics
among the food industry, scientists and consumers.

BSG contains hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and caffeic
acid, all of which possess bioactive properties like antioxidant, anti-inflammatory, anti-
atherogenic and anticancer effects [8]. Research shows that adding BSG to animal feed can
boost milk production, increase milk fat content, and supply essential amino acids [9]. In
human food applications, incorporating BSG into items like cakes and snacks has been shown
to raise protein and fiber levels, although it can also significantly alter taste and texture [10].
BSG is increasingly recognized as a valuable source of fiber, protein and phenolic compounds
like ferulic, p-coumaric, and caffeic acids [11].

As a complex material made up of lignocellulosic biomass, BSG is rich in proteins (20-
30%), fibers (30-70%), lipids, vitamins and minerals and contains around 12-28% lignin, 12-
25% cellulose and 28% non-cellulosic polysaccharides, primarily arabinoxylans [12,13].
Previous studies have thoroughly reviewed and documented the chemical composition of
BSG [9]. On average, around 14 kg of BSG is produced per hectoliter of wort, with a moisture
content ranging between 75% and 90% [14]. The ash content in spent brewer's grains
typically ranges from 2% to 7.9% [9]. BSG also contains vitamins, minerals, a variety of amino
acids, oligo- and polysaccharides and a rich array of phenolic compounds [15]. Among the
phenolic acids, BSG has particularly high levels of ferulic acid (1860-1948 mg/g) and p-
coumaric acid (565-794 mg/g) [16], as well as sinapic, caffeic and syringic acids.
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According to Mussatto et al. [10], BSG can be classified as a lignocellulosic material,
composed of cellulose (a linear homopolymer of glucose units), hemicellulose, and lignin (a
polyphenolic macromolecule), which together make up nearly 50% of the BSG by weight, as
shown in Table 1. On a dry weight basis, BSG contains a considerable amount of
monosaccharides, including significant quantities of glucose, xylose and arabinose.
Hemicellulose, primarily composed of arabinoxylan (AX), is the dominant component of BSG,
constituting up to 40% of its dry weight [16].

Table 1
Composition of BSG
Components of BSG (g/kg dry mass)
Proteins Ash Lianin Cellulose Hemicellulose Research
9 (glucose) Xylose Arabinose conducted
153 46 278 168 199 85 [10]
240 24 119 254 - - [17]
246 12 217 219 206 90 [18]
- 46 169 253 - - [19]
247 42 194 217 136 56 [20]

Phenolic profile of BSG. Phenolic acids, primarily hydroxybenzoic acids and
hydroxycinnamic acids, are secondary metabolites in plants, predominantly found in
vegetables. These compounds have gained considerable research attention due to their
anticancer, anti-inflammatory and antioxidant properties [10].

BSG is considered a significant source of phenolic acids, as the outer layers of barley
grains contain substantial amounts of these compounds [10]. Notably, p-coumaric and ferulic
acids (Figure 2) [23] are present in high concentrations in BSG. So, p-coumaric acid is present
in both forms, with a free concentration of 0.48 + 0.06 and a much higher bound concentration
of 652.27 + 160.5 and ferulic acid shows a minimal free form concentration of 0.072 £ 0.51
but exhibits a significantly high bound concentration of 3739.42 + 270.80 [21, 23]. Research
indicates that the ferulic acid content in BSG ranges from 1860 to 1948 ug/g, while p-
coumaric acid content varies between 565 and 794 pg/g [21]. The total phenolic content in
BSG can also vary depending on the type of malt used [20, 22]. Recent studies have revealed
that the majority of bioactive phenolic acids in BSG are found in bound form [23]. A different
study also found that ferulic acid and p-cumaric acid were detected in elevated
concentrations compared to AX and BSG includes substantial quantities of other bioactive
compounds such as catechin, quinic acid and syringic acid [23].

i !
Ox O NG
H) H H) H
H H H H
H
HF?QO H H H
oL O

Figure 2. Structure of p-coumaric and ferulic acids (CioH1004).
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Chen and Ho [24] demonstrated the antioxidant potential of ferulic acid using the
DPPH and Rancimat methods. Their findings showed that although ferulic acid possesses
antioxidant properties, it is less potent than caffeic acid and a-tocopherol [25]. Caffeic acid,
in particular, has been identified as a powerful in vitro antioxidant and radical scavenger,
effectively neutralizing DPPH and superoxide anions [25]. Furthermore, research using the
DPPH assay has ranked several hydroxycinnamic acids by their antioxidant effectiveness in
the following order: caffeic acid > sinapic acid = ferulic acid > ferulates > p-coumaric acid [26].

Both ferulic and caffeic acids exhibit strong antioxidant potential at low
concentrations, with the ability to neutralize various free radicals. These phenolic acids
scavenge reactive oxygen and nitrogen species, showing concentration-dependent activity
against NO, superoxide, and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid))
radicals. While caffeic acid was found to be more effective in scavenging DPPH radicals,
ferulic acid performed better at scavenging ABTS and NO radicals [27].

In addition to their antioxidant properties, growing evidence suggests that phenolic
acids may have anticancer effects. Caffeic acid, for instance, has shown antiproliferative
activity against various cancer cell lines, including breast gland adenocarcinoma,
lymphoblastic leukemia [28], and cervical cancer cells [28, 29]. The COX-2 (cyclooxygenase-2)
assay has been used to assess the anticancer potential of these compounds. Overexpression
of COX-2, which converts arachidonic acid to prostaglandins, serves a crucial role in
inflammation and cancer development. Researc has demonstrated that phenolic acids such
as caffeic acid [30] and vanillic acid [31], along with polyphenols like epigallocatechin-3-
gallate [32] and quercetin [33], inhibit COX-2 expression, potentially lowering cancer risk.

Incorporation of Brewer’s Spent Grain (BSG) in Animal Feed and Food. As previously
mentioned, BSG contains approximately 20% protein and 70% fiber, making it a valuable raw
material or food ingredient [10]. It is especially beneficial in animal feed, particularly for
ruminants. When paired with cost-effective nitrogen sources like urea, BSG can supply all
essential amino acids required by ruminants [34]. This high nutritional value makes BSG a
significant component in animal feed formulations.

Beyond its use in animal feed, BSG has been successfully incorporated into various
human food products due to its low cost and rich nutritional profile. BSG is especially suitable
for products like cookies and ready-to-eat snacks, where an increase in dietary fiber is desired
[10]. In 1978, researchers explored the use of BSG in cookies by replacing flour with BSG at
levels ranging from 5% to 60% [35]. It was found that adding 40% BSG significantly enhanced
the cookies' physical qualities. This level of supplementation resulted in a 74% increase in
nitrogen and a tenfold increase in crude fiber content. A study published in 2002 supported
these findings, demonstrating that adding BSG (at 5-25%) to cookies significantly boosted
the dietary fiber content [36].

However, it was concluded that 20% BSG was the optimal level for maintaining the
sensory and structural properties of commercially available snacks. When BSG protein
hydrolysates are incorporated into food, there may be concerns about the bitter taste of
certain peptides, caused by their hydrophobic amino acid content [37].

Hot Trub. Another byproduct of beer production is hot trub, which refers to the
sediments formed during wort boiling. The particle size of hot trub is between 30 and 80 um
[38, 39]. This insoluble precipitate is mainly made up of colloidal proteins that solidify during
the boiling process, forming complexes with the polyphenols naturally found in the wort. Hot
trub also includes complex carbohydrates, lipids, minerals, tannins, hop remnants, and
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smaller malt particles [40]. These residues make up approximately 0.2-0.4% of the wort
volume and are generally removed prior to fermentation. It's worth noting that hops, which
contribute to the trub, are added and removed at various stages of brewing, with
approximately 85% of hops used in beer production ending up as byproducts [41].

Hot trub contains a high level of moisture (80-90%), a dry matter content of about 15-
20%, and a low ash content (2-5%) [41]. While its primary component is high molecular
weight proteins, it also has a high carbon content due to the significant amount of reducing
sugars (20%) present [39]. The protein content of hot trub can vary depending on the brewery
but generally ranges from 40% to 70% [41, 42].

The formation of trub is an essential step in brewing, as removing polyphenols and
soluble proteins is crucial to prevent the formation of insoluble complexes. These precipitates
are undesirable in filtered pale beers, which are expected to be bright and clear [40].

Spent Brewer’s Yeast (BSY). Residual brewer’s yeast, also known as BSY, is the second
largest byproduct in the beer manufacturing process, comprising up to 15% of total
byproducts generated [42]. This yeast is recovered through sedimentation before beer
maturation in the final stage of secondary fermentation [43]. Yeast can be reused up to six
times in the brewing process. The Saccharomyces cerevisiae yeast, introduced at the start of
fermentation, undergoes numerous divisions, resulting in a significant increase in yeast
biomass. The growth rate of yeast depends on fermentation conditions in the brewery, with
BSY contributing to beer losses ranging from 1.5% to 3% of the total beer volume produced
[44]. On average, 0.6-0.8 lb/bbl (2.7 kg/m?) of yeast residue is generated from lager
fermentation [41].

Yeast cells are rich in proteins (49%), carbohydrates (40%), minerals, vitamins (7%) and
lipids (4%) [45]. BSY typically has a moisture content of 74%-86% and its dry matter content
ranges from 10% to 16%, depending on the brewery [39]. The mineral residue (ash) content
in spent yeast varies from 2% to 8.5%, with yeast richer in phosphate when it has been reused
fewer times. Additionally, BSY is abundant in polyphenolic compounds and B vitamins,
particularly Bs, By, Bs, Bs, and Bs [46]. The carbon content in BSY is high, accounting for 45%-
47% of the dry matter, and the carbon-to-nitrogen ratio of the residue is around 5.1-5.8 [39].

3. Characteristics of biomass resulting from the wine industry and reuse possibilities

Grapes are one of the most important fruit crops grown worldwide [47]. Grape
production was estimated at approximately 77.8 million tons in 2018 [49]. According to FAO
statistics, grapes are the most widespread fruit crop in the world [49].

Reports from the International Organization of Vine and Wine (OIV) show that 292
million L of wine were produced globally in 2018 [48]. The United States, Australia, Italy,
Spain, France, and Germany are the main grape-producing countries [48]. Spain, China, Italy,
Turkey, and France collectively contribute 50% of the total wine production worldwide [48].

In recent years, there has been a drastic shift in consumer demand. There is a growing
preference for naturally processed products without additives and those that are safe [49].
Consumers prefer safer, tastier, and traditional products that are accepted as natural without
other additives [49]. Therefore, replacing currently used synthetic food antioxidants (many of
which are suspected of being carcinogenic) with natural ones is of interest to food
technologists. Grape waste can be used to extract polyphenols for use in foods [50, 51].
Polyphenols not only exhibit antioxidant activity but also have other properties such as
anticancer, antiallergic, antimutagenic, and anti-aging activities [52, 53].
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Grape pomace, skins, stems, and seeds are among the major wastes generated by the
wine industry. In addition, significant amounts of wastewater, wine yeast, shoots, and some
filter residues generated by the wine industry are among the major causes of environmental
degradation [54], as they lead to the emission of volatile organic compounds (VOCs),
increased chemical oxygen demand infiltration of complex effluents with varied
physicochemical properties into soils [55].

The toxicological effects of winemaking byproducts have been reported on terrestrial
plants and aquatic organisms even at high dilutions, implying the need for proper treatment
of wine industry waste [56]. Currently, wine industry waste is directed by producers either
towards composting or disposal, but it could serve as a source for producing many
bioproducts [57, 58, 59] (Figure 3).
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Figure 3. Valorization options for wine byproducts [57-59].

In addition to traditional uses limited to the fertilizer and biofuel industries, these
byproducts could serve for obtaining food additives, including compounds with antimicrobial
properties, preservatives, antioxidants for the production of functional foods, dietary
supplements, nutraceuticals, medical remedies, and cosmetic products (Figure 3). The
increasing need for energy and waste valorization through eco-friendly processes is pushing
the transition from general practices to sustainable circular approaches [60].

Several recent studies have highlighted these wine byproducts as a good opportunity
for recovering antioxidant compounds, which could subsequently be used as nutraceuticals
and ingredients for functional foods [61-64]. Polyphenol-rich extracts obtained from grape
skins and seeds [65-68] can also be sourced from grape pomace for polysaccharides and fibers
[55,69,70]. Similarly, grape stems, obtained after destemming, emerge as an important source
of phenolic compounds [71-74], particularly stilbenes [55,75,76].

Several in vivo and in vitro studies with phenolic compounds present in wine and
grape pomace have demonstrated significant health-promoting effects, such as
neuroprotection for preventing cognitive and mental disorders [77, 78], prevention of
cardiovascular diseases [80, 81], reduction of insulin resistance [82], and antiproliferative
action against cancer cells [83].
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Functional ingredients are obtained through aqueous or alcoholic solvent extraction
processes [65,66,71,82,84], and more recently, through supercritical CO, extraction [85, 86].
These processes present technical difficulties for industrial scaling, especially due to the
perishability of these products and waste logistics.

Considering the issue of winemaking waste, the search for a viable solution for
utilizing byproducts to obtain ingredients with enhanced biological value necessitated
conducting a study on processing winemaking waste to preserve their functionality through
dehydration processes, which will allow for their further valorization. Additionally, it is
necessary to develop efficient extraction techniques to achieve good recoveries of the
compounds.

Chemical composition of grape pomace. Grape pomace represents the dehydrated
byproduct from the pressing of grapes (Vitis vinifera L.) during the wine and grape juice
production process. It contains the pulp, skins, seeds, peduncles, and possibly fragments of
stems (the woody support of the grape cluster) [77]. Grape pomace contains a high
concentration of phenolic compounds, as not all of these substances are fully extracted
during winemaking [88]. These phenolic compounds, which are secondary plant metabolites,
are known for their potential health benefits, including antioxidant, antimicrobial, antiviral,
and anti-inflammatory properties [76]. Due to these attributes, grape pomace offers an
affordable source of valuable phytochemicals, which can be utilized across various sectors
such as pharmaceuticals, cosmetics, and the food industry [88]. With increased attention to
the sustainability of agricultural practices, efforts have been made to utilize extracts from
grape pomace in various industry fields. It has been demonstrated that spent grape pomace,
after the extraction of bioactive compounds, can undergo procedures for the extraction of
condensed tannins, recommended for adhesive production [87]. The elemental composition
of grape pomace is presented in Figure 4.
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Figure 4. Elemental composition of grape pomace, macroelements and microelements.
*Composed by the author based on bibliographic sources [ 88,89].

As shown in Figure 4, grape pomace is an important source of iron, potassium, and
manganese, as well as copper and zinc. It is low in elements such as sodium and calcium.
Grape pomace can serve as a good source of essential minerals, as it does not accumulate
elements that pose health risks.

The fatty acid composition of grape pomace is presented in Table 2 [90 - 94].
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Table 2
Fatty Acid Composition of Grape Pomace”
Fatty acids, g/kg
g
kX N Q < =
$ ¢ & 3 & = & § § &
Gape § § o ® g © ©§& ¢ T uf
Pomace .2 K ¥ Y o 2 = 'S o g
= [=] = o— 2 o — [ = "‘;,‘ o=
£ £ o = Qo ° S a ‘= £
s £ & © £ g 8 g 2 £
o Iy - 3 < i >
Raw 29 0.06 1.8 6.6 29 0.2 0.07 0.07 0.02 4.4
Dried 3.2 0.07 1.9 7.2 31.8 0.2 0.08 0.08 0.03 4.9

*Composed by the author based on bibliographic sources [90-94]

According to the data presented in Table 2, grape pomace primarily contains linoleic
acid (70.9%), oleic acid (16.1%), palmitic acid (7.1%), and stearic acid (4.3%) [92]. Erucic acid
is absent. There is a significant amount of vitamin E (4.4 mg/kg in raw pomace, 4.9 mg/kg in
dried pomace)[94]. It was found that the total fatty acid content in grape pomace constitutes
75% [90, 91].

The amino acid composition of grape pomace is presented in Table 3 [90-96].

Table 3
Amino acid composition of grape pomace
£ £ z B
c c (] <
Pomace o § £ § o € = £ =8 £ & £ E g o g
E 9o & @ £ © £ ¥ £ £ € & 8B S £ =
g £ 2 © F 3 &£ £ 2 2 8 & 3 > 5 8
T F g 2 =2 9 2 AP+ < < < © O w a
Raw,
a/kg 49 43 13 45 47 81 42 25 68 65 55 6.3 5.5 8 45 44
Dried,
a/kg 54 47 14 49 52 89 46 28 74 71 6 69 214 87 49 48

*Composed by the author based on bibliographic sources [90-96]

Grape pomace has a significant content of glutamic acid (19.5 g/kg raw pomace, 21.4
g/kg dried pomace) and aspartic acid (6.3 g/kg and 6.9 g/kg, respectively) [92]. It also contains
a notable amount of essential amino acids. However, most studies demonstrate that the
nitrogen digestibility of grape pomace is moderate, varying from 16.3% in rabbits to 82.1%
in fish [94]. In pigs, this indicator ranges from 47.7% to 68.1%, and for poultry, it is between
61% and 78% [91].

Polyphenol composition of grape pomace. Research suggests that the chemical
makeup of grapes is shaped by both environmental conditions and grape varieties [55].
Various studies have explored the characteristics of carbohydrate polymers found in grape
skins [95] and grape stems [96]. Grape pomace, known for its high polyphenol content, has
been studied as a source of antioxidants. Since the “French paradox” was observed [97],
numerous studies have emphasized the positive effects of grape or wine polyphenols on
human health [98]. he general composition of several grape pomaces has also been

Journal of Engineering Science September, 2024, Vol. XXXI (3)


https://feedtables.com/fr/content/c160-acide-palmitique
https://feedtables.com/fr/content/c160-acide-palmitique
https://feedtables.com/fr/content/c161-acide-palmitoleique
https://feedtables.com/fr/content/c161-acide-palmitoleique
https://feedtables.com/fr/content/c180-acide-stearique
https://feedtables.com/fr/content/c180-acide-stearique
https://feedtables.com/fr/content/c181-acide-oleique
https://feedtables.com/fr/content/c181-acide-oleique
https://feedtables.com/fr/content/c182-acide-linoleique
https://feedtables.com/fr/content/c182-acide-linoleique
https://feedtables.com/fr/content/c183-acide-linolenique
https://feedtables.com/fr/content/c183-acide-linolenique
https://feedtables.com/fr/content/c200-acide-arachidique
https://feedtables.com/fr/content/c200-acide-arachidique
https://feedtables.com/fr/content/c201-acide-eicosenoique
https://feedtables.com/fr/content/c201-acide-eicosenoique

C. Tasca 165

documented [95, 99]. Grape pomace contains components that inhibit the proliferation of
Caco-2 and HT-29 cancer cells by inducing apoptosis, has potent free radical scavenging
activity, and may provide protection against certain cancers [100].

Chemical characterization of grape pomace is necessary to evaluate their potential,
determine extraction yields, and ensure quality control. Various phenolic compounds,
representative of different structural types, have been identified. Profiles of phenolic
compounds recovered from different winery wastes are dominated by gallic acid, catechin,
and epicatechin. Additionally, hydroxytyrosol, tyrosol, cyanidin glycosides, and various
phenolic acids such as caffeic, protocatechuic, syringic, vanillic, o-coumaric, and p-coumaric
acids have been identified [101]. Different extraction systems quantitatively but not
qualitatively alter the phenolic composition of grape pomace extracts.

Biological characterization involves antioxidant and antimicrobial tests for all extracts
and seed oil, with the ability to inhibit a-glucosidase, a-amylase, a-tyrosinase, and ChE
enzymes, along with anti-inflammatory activity and macrophage release stimulation [103].

The content of anthocyanins and flavan-3-ols in grape phenolic extracts varies
depending on the grape variety and whether the extract comes from whole fruit or fermented
pomace. However, all grape phenolic extracts significantly inhibit glucosyltransferases B and
C (70-85% inhibition) at concentrations up to 62.5 pg/mL (P < 0.01) [102]. Additionally, these
extracts reduce the glycolytic pH drop caused by Streptococcus mutans without affecting
bacterial viability, likely due to partial inhibition of F-ATPase activity (30-65% inhibition at
125 pg/mL; P < 0.01) [102]. Notably, fermented pomace extracts displayed similar or superior
biological activity compared to whole fruit extracts [104]. These findings suggest that grape
phenolic extracts, particularly from pomace, are highly effective against specific virulence
traits of S. mutans, even with significant variations in their phenolic content.

Phenolic compounds are primarily synthesized from carbohydrates via the shikimic
acid and acetate pathways. Shikimic acid leads to cinnamic acids and their derivatives
through transamination and deamination. Acetates lead to polyketides or polyacetates
(malonate). The structure of phenolic compounds ranges from a single aromatic nucleus with
low molecular weight to complex tannins with very high molecular weight, depending on the
nature of the carbon skeleton and the length of the aliphatic chain attached to the benzene
nucleus [105]. Phenolic compounds are capable of conjugation with sugars or organic acids.
Phenolic compounds can be divided into two major groups: flavonoids and non-flavonoids.

Flavonoids are a group of polyphenolic compounds consisting of 15 carbon atoms
arranged in a C6-C3-C6 structure, where two aromatic rings are linked by a three-carbon
bridge. They are the most abundant among all phenolic compounds. They are the most
prevalent phenolic compounds and serve various functions in plants as secondary
metabolites, including roles in UV protection, pigmentation, nitrogen fixation, and resistance
to diseases. This C6-C3-C6 structure results from two synthetic pathways of phenolic
compounds (Figure 5) [105]. The B ring and the three-carbon bridge form a phenylpropanoid
unit, produced from phenylalanine through the shikimic acid pathway, while the A ring is
derived from the condensation of three acetate units via the malonic acid pathway. The fusion
of these two parts involves the condensation of a phenylpropanoid, 4-coumaroyl, with three
malonyl-CoA, each contributing two carbon atoms. The reaction is catalyzed by chalcone
synthase, thus generating tetrahydroxychalcone, which can subsequently generate all
flavonoids [105].
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Figure 5. Flavonoid structure.

There are several groups of flavonoids, the main ones being flavones, flavonols,
flavan-3-ols, isoflavones, flavanones, and anthocyanidins (Figure 6) [106]. Isoflavones are not
present in grapes. The basic structure of flavonoids can undergo many substitutions, with
hydroxyl groups typically at positions 4, 5, and 7. Most flavonoids exist as glycosides, varying
greatly depending on the species and the nature of the sugars. Substitutions alter the
solubility of flavonoids; hydroxylations and glycosylations generally make the compounds
more hydrophilic, while other substituents, such as methylation, make them more lipophilic [106].

Flavonols are often highly widespread compounds. Flavonols such as myricetin,
quercetin, and kaempferol are usually present as O-glycosides. The bond is most frequently
at position 3 of the aromatic C ring, though substitutions at positions 5, 7, 4’, 3°, and 5’ are
possible [106]. The number of aglycones is limited, but there is a substantial number of
derivatives. For example, kaempferol alone has over 200 conjugates with different osidic
fragments. There is strong variability in flavonol concentration depending on the season and
the grape variety considered. Their structure is planar. Four flavonols are predominantly
present in grapes: kaempferol, quercetin (5-10 mg/kg), myricetin, and isorhamnetin.
Quercetin derivatives are always predominant. The average maximum flavonol content in
grapes is around 50 mg/kg but varies between 10 and 285 mg/kg [105].

Flavanones are the first products of the flavonoid biosynthesis pathway. They are
characterized by the absence of double bonding between C2 and C3 and by the presence of
a chiral center at C2. Most naturally occurring flavanones have the B ring attached to the
aromatic C ring. The structure of flavanones is highly reactive, leading to hydroxylation, O-
methylation, and glycosylation reactions. Flavanones are present in grapes at concentrations
of a few mg/kg [106].

OH

Anthocyanin glycoside Flavan-3-ol Flavonol
(Malvidin 3-O-beta-D- ((+)-Catechin) (Quercetin)
glucoside)
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Polymeric polyphenol (Condensed tannin, n=no. Of monomeric units)
Figure 6. Main classes of flavonoids.

Flavan-3-ols are the most structurally complex group of flavonoids. They include
simple monomers like (+)-catechin and its isomer (-)-epicatechin, as well as larger oligomers
and polymers known as proanthocyanidins [107]. Proanthocyanidins are formed from
catechin and epicatechin with oxidative couplings between C4 positions of the heterocycle
and Cé or C8 of the adjacent monomer. Procyanidin oligomers consist of 2 to 5 catechin or
epicatechin units, while polymers contain 6 or more units. Additionally, flavan-3-ols can be
esterified with gallic acid or, alternatively, hydroxylated to form gallo-catechins and
gallotannins. Flavan-3-ols in grapes are primarily found as polymers. Seed tannins are
composed of proanthocyanidins (polymers of catechin and epicatechin), partially galloylated,
while those in grape skins also contain prodelfinidins (polymers of gallo-catechin and
epigallocatechin) [108]. The average number of monomer units, defined as the average
degree of polymerization (DPm), can reach up to 18 in a seed-derived fraction and approaches
30 units in a grape skin extract [108].

Flavones are structurally very similar to flavonols, with the difference being the
absence of a hydroxyl group at C3. There are also many possible substitutions for flavones,
such as hydroxylation, methylation, O- and C-alkylation, and glycosylation. Flavones are
mainly present as glycosides. Grapes contain very small amounts of flavones [106, 107].

Anthocyanidins are widely present in the plant kingdom, primarily as glycosides, and
are found exclusively in the skins of black grapes (absent in white grapes) [109]. They are
responsible for red, blue, and purple colors depending on the pH of the environment [110].
These compounds are involved in protecting plants against excessive sunlight. The most
common anthocyanidins are pelargonidin, cyanidin, delphinidin, peonidin, and malvidin, but
these compounds are present only as glycosylated conjugates, anthocyanins. Anthocyanidins
can form conjugates with hydroxycinnamic acids and organic acids (malic acid and acetic
acid) [111]. Unlike other species (hybrids) with high levels of diglucosylated anthocyanins at
C-3" and C-5’, Vitis vinifera contains only traces of these compounds. This is due to the
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predominant presence of 3-monoglucoside anthocyanidins, especially malvidin 3-O-
glucoside and its acyl derivatives [112]. Anthocyanins are present in grapes with average
contents ranging from 500 to 3,000 mg/kg, but can reach up to 5,000 mg/kg [110].

Non-flavonoids. The main non-flavonoids of nutritional importance are phenolic acids,
hydroxycinnamic acids, and stilbenes (Figure 7) [113].

0 OH 0
HO. LOH /_Q \)LOH
HO H04©’/ HO
OH
OH OH
Hydroxybenzoic acid Stilbene Hydroxycinnamic acid

(Gallic acid) (trans-resveratrol) (Caffeic acid)
Figure 7. Structure of main non-flavonoids.

Phenolic acids. Hydroxybenzoic acids have a C6-C1 structure, consisting of a benzene ring
attached to an aliphatic chain. These include vanillic acid, syringic acid, gentisic acid, and gallic acid
[114]. The primary compound is gallic acid, which is found in grapes between 100 and 230 mg/kg
[105, 109].

Hydroxycinnamic acids. Cinnamic acid is a C6-C3 compound formed through the
deamination of phenylalanine, a process catalyzed by phenylalanine ammonia-lyase. This
reaction produces p-coumaric acid through the hydroxylation of cinnamic acid. Both cinnamic
acid and hydroxycinnamic acids are commonly referred to as phenylpropanoids. Their basic
structure consists of a benzene ring attached to a 3-carbon aliphatic chain, often featuring
one or more hydroxyl groups that may be esterified with an aliphatic alcohol [115]. The most
common hydroxycinnamic acids include caffeic, p-coumaric, ferulic, and sinapic acids. These
compounds are produced through a series of hydroxylation and methylation reactions. They
often accumulate in plants as esters of tartaric acid, forming compounds such as coutaric (an
ester of p-coumaric acid), caftaric (an ester of caffeic acid), and fertaric acid (an ester of ferulic
acid). These esters play significant roles in plant metabolism and contribute to the
antioxidant properties of various foods and beverages [115]. These constituents are primarily
found in the pulp of grape berries. The major hydroxycinnamic acid in grapes is caftaric acid
(caffeoyl tartaric ester), which can be found at levels of approximately 200 mg/kg [116].

Stilbenes are polyphenolic compounds with a C6-C2-Cé6 structure, two benzene rings
linked by a methylene bridge. They are produced by plants in response to fungal, bacterial,
or viral attacks, as demonstrated for trans-resveratrol [117]. Resveratrol is synthesized by
condensing 4-coumaroyl with 3 malonyl CoA, each providing 2 carbon atoms. The reaction is
catalyzed by stilbene synthase, with the products being the same as for flavonoid synthesis,
the only difference being the enzyme that catalyzes the reaction. Resveratrol in its cis- and
trans- forms is found in plant tissues, mainly as trans-resveratrol-3-O-glucoside [118].
Oligomeric forms of stilbenes, such as pallidol and viniferin, have also been identified in
grapes, and more recently, a tetramer of resveratrol, hopeaphenol [119].

The content of catechins and proanthocyanidins (catechin oligomers) varies depending
on the type of grape. In table grapes, the content of these compounds ranges from 243 to
1,108 mg/kg, with over 89% generally located in the seeds [120]. Table 4 presents the
distribution of polyphenolic compounds according to the different parts of red grape berries.

Journal of Engineering Science September, 2024, Vol. XXXI (3)



C. Tasca 169

Table 4
Distribution of polyphenolic compounds in grapes (mg/kg)
Compounds Pulp Skin Seeds
Tannins Traces 100-500 1000-6000
Anthocyanins - 500-3000 -
Phenolic Acids 20-170 50-200 -

*Composed by the author based on bibliographic sources [120-123]

This distribution confirms that the grape pomace resulting from the winemaking
process is an extremely concentrated source of bioactive compounds.

Tannins in grape pomace are primarily composed of proanthocyanidins or catechin
tannins. These compounds are made up of monomeric or polymeric units of flavan-3-ols [61].

Proanthocyanidins, also known as condensed tannins, are synthesized as secondary
polyphenolic metabolites through the flavonoid biosynthetic pathway. Discovered in 1947 by
Jacques Masquelier, who developed and patented techniques for extracting oligomeric
procyanidins from pine bark and grape seeds, proanthocyanidins continue to attract attention
due to their biological and physiological properties [121]. They are composed of procyanidin
and prodelfinidin units linked together by a C4-C8 bond (Figure 8) [122,123].

However, the high polyphenol content is a disadvantage for using pomace as animal
feed and may pose potential pollution issues when used as soil fertilizer.

Antioxidant and microbiostatic properties of CBA from grape pomace. Numerous
studies demonstrate the effectiveness of CBA extracted from grape pomace on health,
particularly due to their antioxidant, anti-inflammatory, and microbiostatic effects related to
the significant CBA content [124]. The antioxidant activity of grape pomace extracts was
evaluated in obese male mice with diet-induced obesity (ODI) by measuring their oxygen
radical absorption capacity (ORAC) [125]. Male ODI mice were randomly assigned to one of
three treatment groups (n = 12): a normal diet group (DN), a high-fat diet group (Gr), and a
high-fat diet group supplemented with grape pomace extracts (GrTS). After 12 weeks of
treatment, the mice in the high-fat diet groups gained 29% more weight compared to those
in the DN group. Supplementation with grape pomace extracts, estimated at 250 mg/kg/day
(GrTS group), reduced plasma levels of C-reactive protein by 15.5% in mice fed a high-fat diet,
suggesting a potential anti-inflammatory effect [125]. Grape pomace extracts (GPE)
demonstrate anti-inflammatory effects in diet-induced obesity, largely due to their high
content of polyphenolic compounds and anthocyanins, measured at 475.4 mg of gallic acid
equivalent/g and 156.9 mg of cyanidin 3-glucoside equivalent/g, respectively [124, 125]. GPE
also contains catechin (28.6 mg/g) and epicatechin (24.5 mg/g), as well as other antioxidants,
including quercetin (1.6 mg/q), trans-resveratrol (60 ug/g), gallic acid (867.2 ug/qg), coutaric
acid (511.8 pg/q), p-hydroxybenzoic acid (408.3 ug/g), and protocatechuic acid (371.5 ug/q).
The antioxidant activity, as measured by the ORAC assay, was 4133 umol TE/g [125].

A recent study examined the effectiveness of antioxidant supplements in reducing
oxidative stress [126], particularly focusing on the impact of grape beverages and extracts on
oxidative stress markers in athletes. The study detailed the polyphenolic doses, participant
demographics, and exercise protocols used [126].

Grape pomace extracts were also tested for their antibacterial properties against
several strains, including Bacillus cereus, Bacillus coagulans, Bacillus subtilis, Staphylococcus
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Figure 8. Structures of flavan-3-ols and proanthocyanidins - main constituents of grape
seed extract: (+)-catechin (1), (-)-epicatechin (2), proanthocyanidin B1 (3), B2 (4), B3 (5), B4
(6), and C1 (7)
aureus, strains of Escherichia coli and Pseudomonas aeruginosa [53]. The results showed that
Gram-positive bacteria were inhibited at concentrations of 850-1000 ppm, while Gram-

negative bacteria required 1250-1500 ppm for inhibition [52].

Additionally, since a significant amount of polyphenols are not absorbed in the small
intestine, their interaction with colonic microbiota was studied. The influence of polyphenolic
extracts on the growth of Lactobacillus acidophilus CECT 903 was investigated in vitro through
agar diffusion tests and liquid medium cultures. Grape phenolic extracts and some standard
phenolic compounds (caffeic, gallic, tannic acids, catechin, epicatechin, and quercetin) were
tested. None of the tested phenolic compounds exerted an inhibitory effect on Lactobacillus
acidophilus growth at a maximum concentration of 5000 pg/disk diffusion tests in agar. It was
found that the phenolic extract from grape pomace (1 mg/mL) induced a significant increase
in Lactobacillus acidophilus biomass in liquid culture media [127].
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Phenolic compounds in grape pomace undoubtedly have therapeutic properties,
particularly for certain chronic conditions such as atherosclerosis, diabetes, hypertension, and
some types of cancer [128]. Among the mechanisms of action of phenolic compounds
involved in the prevention of chronic pathologies are:

1. Grape pomace demonstrates significant antioxidant activity, as measured by ABTSe
and DPPHe assays, as well as H,0, scavenging tests. This high level of antioxidant activity is
strongly associated with the presence of flavan-3-ols, phenolic acids, and ethyl gallate.
Additionally, grape skin has been shown to exert cellular antioxidant effects on
adenocarcinoma cells, with an ECso value of 56.4 mg total phenolic content (TPC)/mL, which
is closely linked to the presence of flavonols and anthocyanins [129].

2. A saving effect on endogenous antioxidants (vitamin E, vitamin C, 3-carotene, etc.) [130].

3. A saving effect on antioxidant enzymes (SOD - superoxide dismutase, catalase,
SeGSHPx - glutathione peroxidase) [131].

4. A significant effect on reducing cholesterol and rebalancing blood lipids high
density lipoproteins (HDL) and low - density lipoproteins (LDL) [132].

5. Chelation effect on oxidation cofactors, fatty acids, and certain metal ions (Fe?*
Cu?) [133].

6. An inhibitory effect on oxidative enzymes such as cyclooxygenases and
lipoxygenases [102].

7. Effect on NO synthesis in endothelial cells of the arterial wall, leading to
vasorelaxation and membrane hyperpolarization through extracellular potassium release [134].

8. An inhibitory effect on the genesis of NADPH oxidase production in vascular wall
cells (thoracic aorta and heart), resulting in a reduction in free radical production [135].

9. A significant effect is the presence of trans-resveratrol. Trans-resveratrol has been
shown to have beneficial effects on diseases related to oxidative and/or inflammatory
processes and extends lifespan. A study aimed at estimating the dietary intake of four
stilbenes in the Spanish adult population allowed for the mediation of intake and their
sources [136]. Among the four stilbenes studied, trans-piceid was the most abundant,
accounting for 53.6% of the total, followed by trans-resveratrol at 20.9%, cis-piceid at 19.3%,
and cis-resveratrol at 6.2%. The majority of the research and development on these
compounds focused on wines (98.4%), with only 1.6% attributed to grapes and grape juices,
while contributions from sources like nuts, pistachios, and berries were negligible, making up
less than 0.01% [136].

As a natural food ingredient, resveratrol possesses significant antioxidant potential,
antitumor activity, and is considered a potential candidate for the prevention and treatment
of various types of cancer [137]. The anticancer properties of resveratrol have been confirmed
in numerous in vitro and in vivo studies, demonstrating its ability to inhibit all stages of
carcinogenesis, including initiation, promotion, and progression. In addition to its anticancer
effects, resveratrol exhibits a wide range of bioactive properties, such as anti-inflammatory,
cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective effects. Despite these
promising benefits, the pharmaceutical application of resveratrol faces challenges due to its
poor solubility, low bioavailability, and potential adverse effects. As a result, numerous
studies have focused on estimating the resveratrol content in wines and grape pomace from
various sources in an effort to improve its therapeutic potential [138-141]. The general
conclusion is that this component accumulates depending on plant metabolism, agroclimatic
conditions, and other difficult-to-predict factors.
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4. Conclusions

Managing waste in the agro-industrial sector is critical for preventing environmental
pollution while simultaneously capitalizing on opportunities to obtain value-added products.
Waste from industries like wine, spirits, beer, and juice production can have harmful effects
on ecosystems if not properly managed. For example, improper disposal of liquid waste can
damage soil chemical composition, disrupt the balance of microorganisms, and negatively
affect plants and other living organisms. Solid organic waste is often managed through
agricultural application, anaerobic digestion, composting, and incineration—though
incineration is costly and linked to air emissions. Liquid waste, on the other hand, is treated
via methods like sedimentation, decantation in stabilization ponds, and anaerobic
fermentation to reduce its environmental impact. The key challenge is that agro-industrial
waste often contains toxic components harmful to plants and ecosystems, making direct soil
disposal unsuitable. However, this waste can be repurposed as a renewable source of value-
added products, offering potential for sustainable development within the agro-industrial sector.
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